$$$- 10 a f n^{2} t^{2} x^{21} y$$$$$$x$$$ 的積分

此計算器會求出 $$$- 10 a f n^{2} t^{2} x^{21} y$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- 10 a f n^{2} t^{2} x^{21} y\right)\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- 10 a f n^{2} t^{2} y$$$$$$f{\left(x \right)} = x^{21}$$$

$${\color{red}{\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x}}} = {\color{red}{\left(- 10 a f n^{2} t^{2} y \int{x^{21} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=21$$$

$$- 10 a f n^{2} t^{2} y {\color{red}{\int{x^{21} d x}}}=- 10 a f n^{2} t^{2} y {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=- 10 a f n^{2} t^{2} y {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$

因此,

$$\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x} = - \frac{5 a f n^{2} t^{2} x^{22} y}{11}$$

加上積分常數:

$$\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x} = - \frac{5 a f n^{2} t^{2} x^{22} y}{11}+C$$

答案

$$$\int \left(- 10 a f n^{2} t^{2} x^{21} y\right)\, dx = - \frac{5 a f n^{2} t^{2} x^{22} y}{11} + C$$$A


Please try a new game Rotatly