$$$x$$$ değişkenine göre $$$- 10 a f n^{2} t^{2} x^{21} y$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(- 10 a f n^{2} t^{2} x^{21} y\right)\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=- 10 a f n^{2} t^{2} y$$$ ve $$$f{\left(x \right)} = x^{21}$$$ ile uygula:
$${\color{red}{\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x}}} = {\color{red}{\left(- 10 a f n^{2} t^{2} y \int{x^{21} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=21$$$ ile uygulayın:
$$- 10 a f n^{2} t^{2} y {\color{red}{\int{x^{21} d x}}}=- 10 a f n^{2} t^{2} y {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=- 10 a f n^{2} t^{2} y {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$
Dolayısıyla,
$$\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x} = - \frac{5 a f n^{2} t^{2} x^{22} y}{11}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x} = - \frac{5 a f n^{2} t^{2} x^{22} y}{11}+C$$
Cevap
$$$\int \left(- 10 a f n^{2} t^{2} x^{21} y\right)\, dx = - \frac{5 a f n^{2} t^{2} x^{22} y}{11} + C$$$A