Integrale di $$$- 10 a f n^{2} t^{2} x^{21} y$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(- 10 a f n^{2} t^{2} x^{21} y\right)\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=- 10 a f n^{2} t^{2} y$$$ e $$$f{\left(x \right)} = x^{21}$$$:
$${\color{red}{\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x}}} = {\color{red}{\left(- 10 a f n^{2} t^{2} y \int{x^{21} d x}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=21$$$:
$$- 10 a f n^{2} t^{2} y {\color{red}{\int{x^{21} d x}}}=- 10 a f n^{2} t^{2} y {\color{red}{\frac{x^{1 + 21}}{1 + 21}}}=- 10 a f n^{2} t^{2} y {\color{red}{\left(\frac{x^{22}}{22}\right)}}$$
Pertanto,
$$\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x} = - \frac{5 a f n^{2} t^{2} x^{22} y}{11}$$
Aggiungi la costante di integrazione:
$$\int{\left(- 10 a f n^{2} t^{2} x^{21} y\right)d x} = - \frac{5 a f n^{2} t^{2} x^{22} y}{11}+C$$
Risposta
$$$\int \left(- 10 a f n^{2} t^{2} x^{21} y\right)\, dx = - \frac{5 a f n^{2} t^{2} x^{22} y}{11} + C$$$A