$$$\frac{1}{x^{2} y}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{1}{x^{2} y}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{y}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{1}{x^{2} y} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{2}} d x}}{y}}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{y}=\frac{{\color{red}{\int{x^{-2} d x}}}}{y}=\frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{y}=\frac{{\color{red}{\left(- x^{-1}\right)}}}{y}=\frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{y}$$
因此,
$$\int{\frac{1}{x^{2} y} d x} = - \frac{1}{x y}$$
加上積分常數:
$$\int{\frac{1}{x^{2} y} d x} = - \frac{1}{x y}+C$$
答案
$$$\int \frac{1}{x^{2} y}\, dx = - \frac{1}{x y} + C$$$A