$$$\frac{1}{x^{2} y}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \frac{1}{x^{2} y}\, dx$$$。
解答
对 $$$c=\frac{1}{y}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{1}{x^{2} y} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{2}} d x}}{y}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{2}} d x}}}}{y}=\frac{{\color{red}{\int{x^{-2} d x}}}}{y}=\frac{{\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{y}=\frac{{\color{red}{\left(- x^{-1}\right)}}}{y}=\frac{{\color{red}{\left(- \frac{1}{x}\right)}}}{y}$$
因此,
$$\int{\frac{1}{x^{2} y} d x} = - \frac{1}{x y}$$
加上积分常数:
$$\int{\frac{1}{x^{2} y} d x} = - \frac{1}{x y}+C$$
答案
$$$\int \frac{1}{x^{2} y}\, dx = - \frac{1}{x y} + C$$$A