$$$x \operatorname{atan}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$x \operatorname{atan}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x \operatorname{atan}{\left(x \right)}\, dx$$$

解答

對於積分 $$$\int{x \operatorname{atan}{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\operatorname{atan}{\left(x \right)}$$$$$$\operatorname{dv}=x dx$$$

$$$\operatorname{du}=\left(\operatorname{atan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}$$$(步驟見 »),且 $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$(步驟見 »)。

所以,

$${\color{red}{\int{x \operatorname{atan}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x^{2} + 1} d x}\right)}}={\color{red}{\left(\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \int{\frac{x^{2}}{2 x^{2} + 2} d x}\right)}}$$

簡化被積函數:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 x^{2} + 2} d x}}} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{x^{2}}{x^{2} + 1} d x}}{2}\right)}}$$

重寫並拆分分式:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}}{2}$$

逐項積分:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}}{2}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2} - \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2} - \frac{{\color{red}{x}}}{2}$$

$$$\frac{1}{x^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 1} d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{{\color{red}{\operatorname{atan}{\left(x \right)}}}}{2}$$

因此,

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{\operatorname{atan}{\left(x \right)}}{2}$$

化簡:

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}$$

加上積分常數:

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}+C$$

答案

$$$\int x \operatorname{atan}{\left(x \right)}\, dx = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly