Integral de $$$x \operatorname{atan}{\left(x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$x \operatorname{atan}{\left(x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int x \operatorname{atan}{\left(x \right)}\, dx$$$.

Solución

Para la integral $$$\int{x \operatorname{atan}{\left(x \right)} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=\operatorname{atan}{\left(x \right)}$$$ y $$$\operatorname{dv}=x dx$$$.

Entonces $$$\operatorname{du}=\left(\operatorname{atan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (los pasos pueden verse »).

La integral se convierte en

$${\color{red}{\int{x \operatorname{atan}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x^{2} + 1} d x}\right)}}={\color{red}{\left(\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \int{\frac{x^{2}}{2 x^{2} + 2} d x}\right)}}$$

Simplificar el integrando:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 x^{2} + 2} d x}}} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{x^{2}}{x^{2} + 1} d x}}{2}\right)}}$$

Reescribe y separa la fracción:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}}{2}$$

Integra término a término:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}}{2}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2} - \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2} - \frac{{\color{red}{x}}}{2}$$

La integral de $$$\frac{1}{x^{2} + 1}$$$ es $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 1} d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{{\color{red}{\operatorname{atan}{\left(x \right)}}}}{2}$$

Por lo tanto,

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{\operatorname{atan}{\left(x \right)}}{2}$$

Simplificar:

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}$$

Añade la constante de integración:

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}+C$$

Respuesta

$$$\int x \operatorname{atan}{\left(x \right)}\, dx = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly