$$$x \operatorname{atan}{\left(x \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$x \operatorname{atan}{\left(x \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int x \operatorname{atan}{\left(x \right)}\, dx$$$.

Çözüm

$$$\int{x \operatorname{atan}{\left(x \right)} d x}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ kullanın.

$$$\operatorname{u}=\operatorname{atan}{\left(x \right)}$$$ ve $$$\operatorname{dv}=x dx$$$ olsun.

O halde $$$\operatorname{du}=\left(\operatorname{atan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{x d x}=\frac{x^{2}}{2}$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$${\color{red}{\int{x \operatorname{atan}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(x \right)} \cdot \frac{x^{2}}{2}-\int{\frac{x^{2}}{2} \cdot \frac{1}{x^{2} + 1} d x}\right)}}={\color{red}{\left(\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \int{\frac{x^{2}}{2 x^{2} + 2} d x}\right)}}$$

İntegranı sadeleştirin:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 x^{2} + 2} d x}}} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(x \right)} = \frac{x^{2}}{x^{2} + 1}$$$ ile uygula:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\int{\frac{x^{2}}{2 \left(x^{2} + 1\right)} d x}}} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{x^{2}}{x^{2} + 1} d x}}{2}\right)}}$$

Kesri yeniden yazın ve parçalara ayırın:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\frac{x^{2}}{x^{2} + 1} d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}}{2}$$

Her terimin integralini alın:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\int{\left(1 - \frac{1}{x^{2} + 1}\right)d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{{\color{red}{\left(\int{1 d x} - \int{\frac{1}{x^{2} + 1} d x}\right)}}}{2}$$

$$$c=1$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2} - \frac{{\color{red}{\int{1 d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2} - \frac{{\color{red}{x}}}{2}$$

$$$\frac{1}{x^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$\frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 1} d x}}}}{2} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{{\color{red}{\operatorname{atan}{\left(x \right)}}}}{2}$$

Dolayısıyla,

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)}}{2} - \frac{x}{2} + \frac{\operatorname{atan}{\left(x \right)}}{2}$$

Sadeleştirin:

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}$$

İntegrasyon sabitini ekleyin:

$$\int{x \operatorname{atan}{\left(x \right)} d x} = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}+C$$

Cevap

$$$\int x \operatorname{atan}{\left(x \right)}\, dx = \frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly