$$$x^{2} e^{- 2 x}$$$ 的積分

此計算器將求出 $$$x^{2} e^{- 2 x}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{2} e^{- 2 x}\, dx$$$

解答

對於積分 $$$\int{x^{2} e^{- 2 x} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=e^{- 2 x} dx$$$

$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- 2 x} d x}=- \frac{e^{- 2 x}}{2}$$$(步驟見 »)。

所以,

$${\color{red}{\int{x^{2} e^{- 2 x} d x}}}={\color{red}{\left(x^{2} \cdot \left(- \frac{e^{- 2 x}}{2}\right)-\int{\left(- \frac{e^{- 2 x}}{2}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- \frac{x^{2} e^{- 2 x}}{2} - \int{\left(- x e^{- 2 x}\right)d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-1$$$$$$f{\left(x \right)} = x e^{- 2 x}$$$

$$- \frac{x^{2} e^{- 2 x}}{2} - {\color{red}{\int{\left(- x e^{- 2 x}\right)d x}}} = - \frac{x^{2} e^{- 2 x}}{2} - {\color{red}{\left(- \int{x e^{- 2 x} d x}\right)}}$$

對於積分 $$$\int{x e^{- 2 x} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=e^{- 2 x} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- 2 x} d x}=- \frac{e^{- 2 x}}{2}$$$(步驟見 »)。

該積分可改寫為

$$- \frac{x^{2} e^{- 2 x}}{2} + {\color{red}{\int{x e^{- 2 x} d x}}}=- \frac{x^{2} e^{- 2 x}}{2} + {\color{red}{\left(x \cdot \left(- \frac{e^{- 2 x}}{2}\right)-\int{\left(- \frac{e^{- 2 x}}{2}\right) \cdot 1 d x}\right)}}=- \frac{x^{2} e^{- 2 x}}{2} + {\color{red}{\left(- \frac{x e^{- 2 x}}{2} - \int{\left(- \frac{e^{- 2 x}}{2}\right)d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(x \right)} = e^{- 2 x}$$$

$$- \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - {\color{red}{\int{\left(- \frac{e^{- 2 x}}{2}\right)d x}}} = - \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - {\color{red}{\left(- \frac{\int{e^{- 2 x} d x}}{2}\right)}}$$

$$$u=- 2 x$$$

$$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (步驟見»),並可得 $$$dx = - \frac{du}{2}$$$

因此,

$$- \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} + \frac{{\color{red}{\int{e^{- 2 x} d x}}}}{2} = - \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}}{2}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{1}{2}$$$$$$f{\left(u \right)} = e^{u}$$$

$$- \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} + \frac{{\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}}{2} = - \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} + \frac{{\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}}{2}$$

指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$

$$- \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - \frac{{\color{red}{\int{e^{u} d u}}}}{4} = - \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - \frac{{\color{red}{e^{u}}}}{4}$$

回顧一下 $$$u=- 2 x$$$

$$- \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - \frac{e^{{\color{red}{u}}}}{4} = - \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - \frac{e^{{\color{red}{\left(- 2 x\right)}}}}{4}$$

因此,

$$\int{x^{2} e^{- 2 x} d x} = - \frac{x^{2} e^{- 2 x}}{2} - \frac{x e^{- 2 x}}{2} - \frac{e^{- 2 x}}{4}$$

化簡:

$$\int{x^{2} e^{- 2 x} d x} = \frac{\left(- 2 x^{2} - 2 x - 1\right) e^{- 2 x}}{4}$$

加上積分常數:

$$\int{x^{2} e^{- 2 x} d x} = \frac{\left(- 2 x^{2} - 2 x - 1\right) e^{- 2 x}}{4}+C$$

答案

$$$\int x^{2} e^{- 2 x}\, dx = \frac{\left(- 2 x^{2} - 2 x - 1\right) e^{- 2 x}}{4} + C$$$A


Please try a new game Rotatly