$$$\tan^{3}{\left(x \right)}$$$ 的積分

此計算器將求出 $$$\tan^{3}{\left(x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \tan^{3}{\left(x \right)}\, dx$$$

解答

$$$u=\tan{\left(x \right)}$$$

$$$x=\operatorname{atan}{\left(u \right)}$$$$$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步驟見»)。

該積分可改寫為

$${\color{red}{\int{\tan^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{3}}{u^{2} + 1} d u}}}$$

由於分子次數不小於分母次數,進行多項式長除法(步驟見»):

$${\color{red}{\int{\frac{u^{3}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u - \frac{u}{u^{2} + 1}\right)d u}}}$$

逐項積分:

$${\color{red}{\int{\left(u - \frac{u}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(\int{u d u} - \int{\frac{u}{u^{2} + 1} d u}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$- \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\int{u d u}}}=- \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- \int{\frac{u}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

$$$v=u^{2} + 1$$$

$$$dv=\left(u^{2} + 1\right)^{\prime }du = 2 u du$$$ (步驟見»),並可得 $$$u du = \frac{dv}{2}$$$

因此,

$$\frac{u^{2}}{2} - {\color{red}{\int{\frac{u}{u^{2} + 1} d u}}} = \frac{u^{2}}{2} - {\color{red}{\int{\frac{1}{2 v} d v}}}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$

$$\frac{u^{2}}{2} - {\color{red}{\int{\frac{1}{2 v} d v}}} = \frac{u^{2}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{2}\right)}}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$\frac{u^{2}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{u^{2}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

回顧一下 $$$v=u^{2} + 1$$$

$$\frac{u^{2}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{u^{2}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u^{2} + 1\right)}}}\right| \right)}}{2}$$

回顧一下 $$$u=\tan{\left(x \right)}$$$

$$- \frac{\ln{\left(1 + {\color{red}{u}}^{2} \right)}}{2} + \frac{{\color{red}{u}}^{2}}{2} = - \frac{\ln{\left(1 + {\color{red}{\tan{\left(x \right)}}}^{2} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}^{2}}{2}$$

因此,

$$\int{\tan^{3}{\left(x \right)} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{2}{\left(x \right)}}{2}$$

加上積分常數:

$$\int{\tan^{3}{\left(x \right)} d x} = - \frac{\ln{\left(\tan^{2}{\left(x \right)} + 1 \right)}}{2} + \frac{\tan^{2}{\left(x \right)}}{2}+C$$

答案

$$$\int \tan^{3}{\left(x \right)}\, dx = \left(- \frac{\ln\left(\tan^{2}{\left(x \right)} + 1\right)}{2} + \frac{\tan^{2}{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly