$$$x^{2} \ln\left(x^{2}\right)$$$ 的積分

此計算器將求出 $$$x^{2} \ln\left(x^{2}\right)$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int x^{2} \ln\left(x^{2}\right)\, dx$$$

解答

已將輸入重寫為:$$$\int{x^{2} \ln{\left(x^{2} \right)} d x}=\int{2 x^{2} \ln{\left(x \right)} d x}$$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = x^{2} \ln{\left(x \right)}$$$

$${\color{red}{\int{2 x^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{x^{2} \ln{\left(x \right)} d x}\right)}}$$

對於積分 $$$\int{x^{2} \ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=x^{2} dx$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$(步驟見 »)。

因此,

$$2 {\color{red}{\int{x^{2} \ln{\left(x \right)} d x}}}=2 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}=2 {\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(x \right)} = x^{2}$$$

$$\frac{2 x^{3} \ln{\left(x \right)}}{3} - 2 {\color{red}{\int{\frac{x^{2}}{3} d x}}} = \frac{2 x^{3} \ln{\left(x \right)}}{3} - 2 {\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{x^{2} d x}}}}{3}=\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{3}=\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{3}$$

因此,

$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 x^{3}}{9}$$

化簡:

$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \left(3 \ln{\left(x \right)} - 1\right)}{9}$$

加上積分常數:

$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \left(3 \ln{\left(x \right)} - 1\right)}{9}+C$$

答案

$$$\int x^{2} \ln\left(x^{2}\right)\, dx = \frac{2 x^{3} \left(3 \ln\left(x\right) - 1\right)}{9} + C$$$A


Please try a new game Rotatly