$$$x^{2} \ln\left(x^{2}\right)$$$の積分

この計算機は、手順を示しながら$$$x^{2} \ln\left(x^{2}\right)$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{2} \ln\left(x^{2}\right)\, dx$$$ を求めよ。

解答

入力は次のように書き換えられます: $$$\int{x^{2} \ln{\left(x^{2} \right)} d x}=\int{2 x^{2} \ln{\left(x \right)} d x}$$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$$$$f{\left(x \right)} = x^{2} \ln{\left(x \right)}$$$ に対して適用する:

$${\color{red}{\int{2 x^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{x^{2} \ln{\left(x \right)} d x}\right)}}$$

積分 $$$\int{x^{2} \ln{\left(x \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=x^{2} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(手順は»を参照)および$$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$(手順は»を参照)。

したがって、

$$2 {\color{red}{\int{x^{2} \ln{\left(x \right)} d x}}}=2 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}=2 {\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{3}$$$$$$f{\left(x \right)} = x^{2}$$$ に対して適用する:

$$\frac{2 x^{3} \ln{\left(x \right)}}{3} - 2 {\color{red}{\int{\frac{x^{2}}{3} d x}}} = \frac{2 x^{3} \ln{\left(x \right)}}{3} - 2 {\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{x^{2} d x}}}}{3}=\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{3}=\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{3}$$

したがって、

$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 x^{3}}{9}$$

簡単化せよ:

$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \left(3 \ln{\left(x \right)} - 1\right)}{9}$$

積分定数を加える:

$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \left(3 \ln{\left(x \right)} - 1\right)}{9}+C$$

解答

$$$\int x^{2} \ln\left(x^{2}\right)\, dx = \frac{2 x^{3} \left(3 \ln\left(x\right) - 1\right)}{9} + C$$$A


Please try a new game Rotatly