Integral dari $$$x^{2} \ln\left(x^{2}\right)$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int x^{2} \ln\left(x^{2}\right)\, dx$$$.
Solusi
Masukan ditulis ulang: $$$\int{x^{2} \ln{\left(x^{2} \right)} d x}=\int{2 x^{2} \ln{\left(x \right)} d x}$$$.
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = x^{2} \ln{\left(x \right)}$$$:
$${\color{red}{\int{2 x^{2} \ln{\left(x \right)} d x}}} = {\color{red}{\left(2 \int{x^{2} \ln{\left(x \right)} d x}\right)}}$$
Untuk integral $$$\int{x^{2} \ln{\left(x \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=\ln{\left(x \right)}$$$ dan $$$\operatorname{dv}=x^{2} dx$$$.
Maka $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (langkah-langkah dapat dilihat di »).
Integralnya menjadi
$$2 {\color{red}{\int{x^{2} \ln{\left(x \right)} d x}}}=2 {\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{x} d x}\right)}}=2 {\color{red}{\left(\frac{x^{3} \ln{\left(x \right)}}{3} - \int{\frac{x^{2}}{3} d x}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(x \right)} = x^{2}$$$:
$$\frac{2 x^{3} \ln{\left(x \right)}}{3} - 2 {\color{red}{\int{\frac{x^{2}}{3} d x}}} = \frac{2 x^{3} \ln{\left(x \right)}}{3} - 2 {\color{red}{\left(\frac{\int{x^{2} d x}}{3}\right)}}$$
Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:
$$\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\int{x^{2} d x}}}}{3}=\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{3}=\frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{3}$$
Oleh karena itu,
$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \ln{\left(x \right)}}{3} - \frac{2 x^{3}}{9}$$
Sederhanakan:
$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \left(3 \ln{\left(x \right)} - 1\right)}{9}$$
Tambahkan konstanta integrasi:
$$\int{2 x^{2} \ln{\left(x \right)} d x} = \frac{2 x^{3} \left(3 \ln{\left(x \right)} - 1\right)}{9}+C$$
Jawaban
$$$\int x^{2} \ln\left(x^{2}\right)\, dx = \frac{2 x^{3} \left(3 \ln\left(x\right) - 1\right)}{9} + C$$$A