$$$\ln\left(x\right)$$$ 的積分
您的輸入
求$$$\int \ln\left(x\right)\, dx$$$。
解答
對於積分 $$$\int{\ln{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(x \right)}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
該積分可改寫為
$${\color{red}{\int{\ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}} = x \ln{\left(x \right)} - {\color{red}{x}}$$
因此,
$$\int{\ln{\left(x \right)} d x} = x \ln{\left(x \right)} - x$$
化簡:
$$\int{\ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right)$$
加上積分常數:
$$\int{\ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right)+C$$
答案
$$$\int \ln\left(x\right)\, dx = x \left(\ln\left(x\right) - 1\right) + C$$$A