Integral dari $$$\ln\left(x\right)$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \ln\left(x\right)\, dx$$$.
Solusi
Untuk integral $$$\int{\ln{\left(x \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=\ln{\left(x \right)}$$$ dan $$$\operatorname{dv}=dx$$$.
Maka $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{1 d x}=x$$$ (langkah-langkah dapat dilihat di »).
Jadi,
$${\color{red}{\int{\ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Terapkan aturan konstanta $$$\int c\, dx = c x$$$ dengan $$$c=1$$$:
$$x \ln{\left(x \right)} - {\color{red}{\int{1 d x}}} = x \ln{\left(x \right)} - {\color{red}{x}}$$
Oleh karena itu,
$$\int{\ln{\left(x \right)} d x} = x \ln{\left(x \right)} - x$$
Sederhanakan:
$$\int{\ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right)$$
Tambahkan konstanta integrasi:
$$\int{\ln{\left(x \right)} d x} = x \left(\ln{\left(x \right)} - 1\right)+C$$
Jawaban
$$$\int \ln\left(x\right)\, dx = x \left(\ln\left(x\right) - 1\right) + C$$$A