$$$e^{- \frac{x^{2}}{2}}$$$ 的積分
您的輸入
求$$$\int e^{- \frac{x^{2}}{2}}\, dx$$$。
解答
令 $$$u=\frac{\sqrt{2} x}{2}$$$。
則 $$$du=\left(\frac{\sqrt{2} x}{2}\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (步驟見»),並可得 $$$dx = \sqrt{2} du$$$。
所以,
$${\color{red}{\int{e^{- \frac{x^{2}}{2}} d x}}} = {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\sqrt{2}$$$ 與 $$$f{\left(u \right)} = e^{- u^{2}}$$$:
$${\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}} = {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}$$
此積分(誤差函數)不存在閉式表示:
$$\sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}} = \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$
回顧一下 $$$u=\frac{\sqrt{2} x}{2}$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}} \right)}}{2}$$
因此,
$$\int{e^{- \frac{x^{2}}{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
加上積分常數:
$$\int{e^{- \frac{x^{2}}{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$
答案
$$$\int e^{- \frac{x^{2}}{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A