$$$e^{- \frac{x^{2}}{2}}$$$の積分

この計算機は、手順を示しながら$$$e^{- \frac{x^{2}}{2}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int e^{- \frac{x^{2}}{2}}\, dx$$$ を求めよ。

解答

$$$u=\frac{\sqrt{2} x}{2}$$$ とする。

すると $$$du=\left(\frac{\sqrt{2} x}{2}\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$(手順は»で確認できます)、$$$dx = \sqrt{2} du$$$ となります。

したがって、

$${\color{red}{\int{e^{- \frac{x^{2}}{2}} d x}}} = {\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\sqrt{2}$$$$$$f{\left(u \right)} = e^{- u^{2}}$$$ に対して適用する:

$${\color{red}{\int{\sqrt{2} e^{- u^{2}} d u}}} = {\color{red}{\sqrt{2} \int{e^{- u^{2}} d u}}}$$

この積分(誤差関数)には閉形式はありません:

$$\sqrt{2} {\color{red}{\int{e^{- u^{2}} d u}}} = \sqrt{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(u \right)}}{2}\right)}}$$

次のことを思い出してください $$$u=\frac{\sqrt{2} x}{2}$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{u}} \right)}}{2} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left({\color{red}{\left(\frac{\sqrt{2} x}{2}\right)}} \right)}}{2}$$

したがって、

$$\int{e^{- \frac{x^{2}}{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$

積分定数を加える:

$$\int{e^{- \frac{x^{2}}{2}} d x} = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$

解答

$$$\int e^{- \frac{x^{2}}{2}}\, dx = \frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly