$$$\csc{\left(x \right)}$$$ 的積分
您的輸入
求$$$\int \csc{\left(x \right)}\, dx$$$。
解答
將餘割改寫為 $$$\csc\left(x\right)=\frac{1}{\sin\left(x\right)}$$$:
$${\color{red}{\int{\csc{\left(x \right)} d x}}} = {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}$$
使用倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 重寫正弦:
$${\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{x}{2} \right)$$$:
$${\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
令 $$$u=\tan{\left(\frac{x}{2} \right)}$$$。
則 $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$。
該積分變為
$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}$$
因此,
$$\int{\csc{\left(x \right)} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}$$
加上積分常數:
$$\int{\csc{\left(x \right)} d x} = \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}+C$$
答案
$$$\int \csc{\left(x \right)}\, dx = \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + C$$$A