$$$\frac{7}{z^{2}}$$$ 的積分

此計算器將求出 $$$\frac{7}{z^{2}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{7}{z^{2}}\, dz$$$

解答

套用常數倍法則 $$$\int c f{\left(z \right)}\, dz = c \int f{\left(z \right)}\, dz$$$,使用 $$$c=7$$$$$$f{\left(z \right)} = \frac{1}{z^{2}}$$$

$${\color{red}{\int{\frac{7}{z^{2}} d z}}} = {\color{red}{\left(7 \int{\frac{1}{z^{2}} d z}\right)}}$$

套用冪次法則 $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$7 {\color{red}{\int{\frac{1}{z^{2}} d z}}}=7 {\color{red}{\int{z^{-2} d z}}}=7 {\color{red}{\frac{z^{-2 + 1}}{-2 + 1}}}=7 {\color{red}{\left(- z^{-1}\right)}}=7 {\color{red}{\left(- \frac{1}{z}\right)}}$$

因此,

$$\int{\frac{7}{z^{2}} d z} = - \frac{7}{z}$$

加上積分常數:

$$\int{\frac{7}{z^{2}} d z} = - \frac{7}{z}+C$$

答案

$$$\int \frac{7}{z^{2}}\, dz = - \frac{7}{z} + C$$$A


Please try a new game Rotatly