$$$\frac{2^{\frac{1}{x}}}{x^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{2^{\frac{1}{x}}}{x^{2}}\, dx$$$。
解答
換底:
$${\color{red}{\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{x^{2}} d x}}}$$
令 $$$u=\frac{1}{x}$$$。
則 $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{x^{2}} = - du$$$。
該積分可改寫為
$${\color{red}{\int{\frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\left(- e^{u \ln{\left(2 \right)}}\right)d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$ 與 $$$f{\left(u \right)} = e^{u \ln{\left(2 \right)}}$$$:
$${\color{red}{\int{\left(- e^{u \ln{\left(2 \right)}}\right)d u}}} = {\color{red}{\left(- \int{e^{u \ln{\left(2 \right)}} d u}\right)}}$$
令 $$$v=u \ln{\left(2 \right)}$$$。
則 $$$dv=\left(u \ln{\left(2 \right)}\right)^{\prime }du = \ln{\left(2 \right)} du$$$ (步驟見»),並可得 $$$du = \frac{dv}{\ln{\left(2 \right)}}$$$。
所以,
$$- {\color{red}{\int{e^{u \ln{\left(2 \right)}} d u}}} = - {\color{red}{\int{\frac{e^{v}}{\ln{\left(2 \right)}} d v}}}$$
套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{\ln{\left(2 \right)}}$$$ 與 $$$f{\left(v \right)} = e^{v}$$$:
$$- {\color{red}{\int{\frac{e^{v}}{\ln{\left(2 \right)}} d v}}} = - {\color{red}{\frac{\int{e^{v} d v}}{\ln{\left(2 \right)}}}}$$
指數函數的積分為 $$$\int{e^{v} d v} = e^{v}$$$:
$$- \frac{{\color{red}{\int{e^{v} d v}}}}{\ln{\left(2 \right)}} = - \frac{{\color{red}{e^{v}}}}{\ln{\left(2 \right)}}$$
回顧一下 $$$v=u \ln{\left(2 \right)}$$$:
$$- \frac{e^{{\color{red}{v}}}}{\ln{\left(2 \right)}} = - \frac{e^{{\color{red}{u \ln{\left(2 \right)}}}}}{\ln{\left(2 \right)}}$$
回顧一下 $$$u=\frac{1}{x}$$$:
$$- \frac{e^{\ln{\left(2 \right)} {\color{red}{u}}}}{\ln{\left(2 \right)}} = - \frac{e^{\ln{\left(2 \right)} {\color{red}{\frac{1}{x}}}}}{\ln{\left(2 \right)}}$$
因此,
$$\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x} = - \frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{\ln{\left(2 \right)}}$$
加上積分常數:
$$\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x} = - \frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{\ln{\left(2 \right)}}+C$$
答案
$$$\int \frac{2^{\frac{1}{x}}}{x^{2}}\, dx = - \frac{e^{\frac{\ln\left(2\right)}{x}}}{\ln\left(2\right)} + C$$$A