$$$\frac{2^{\frac{1}{x}}}{x^{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{2^{\frac{1}{x}}}{x^{2}}\, dx$$$.
Çözüm
Tabanı değiştir:
$${\color{red}{\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{x^{2}} d x}}}$$
$$$u=\frac{1}{x}$$$ olsun.
Böylece $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x^{2}} = - du$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\left(- e^{u \ln{\left(2 \right)}}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = e^{u \ln{\left(2 \right)}}$$$ ile uygula:
$${\color{red}{\int{\left(- e^{u \ln{\left(2 \right)}}\right)d u}}} = {\color{red}{\left(- \int{e^{u \ln{\left(2 \right)}} d u}\right)}}$$
$$$v=u \ln{\left(2 \right)}$$$ olsun.
Böylece $$$dv=\left(u \ln{\left(2 \right)}\right)^{\prime }du = \ln{\left(2 \right)} du$$$ (adımlar » görülebilir) ve $$$du = \frac{dv}{\ln{\left(2 \right)}}$$$ elde ederiz.
Dolayısıyla,
$$- {\color{red}{\int{e^{u \ln{\left(2 \right)}} d u}}} = - {\color{red}{\int{\frac{e^{v}}{\ln{\left(2 \right)}} d v}}}$$
Sabit katsayı kuralı $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$'i $$$c=\frac{1}{\ln{\left(2 \right)}}$$$ ve $$$f{\left(v \right)} = e^{v}$$$ ile uygula:
$$- {\color{red}{\int{\frac{e^{v}}{\ln{\left(2 \right)}} d v}}} = - {\color{red}{\frac{\int{e^{v} d v}}{\ln{\left(2 \right)}}}}$$
Üstel fonksiyonun integrali $$$\int{e^{v} d v} = e^{v}$$$:
$$- \frac{{\color{red}{\int{e^{v} d v}}}}{\ln{\left(2 \right)}} = - \frac{{\color{red}{e^{v}}}}{\ln{\left(2 \right)}}$$
Hatırlayın ki $$$v=u \ln{\left(2 \right)}$$$:
$$- \frac{e^{{\color{red}{v}}}}{\ln{\left(2 \right)}} = - \frac{e^{{\color{red}{u \ln{\left(2 \right)}}}}}{\ln{\left(2 \right)}}$$
Hatırlayın ki $$$u=\frac{1}{x}$$$:
$$- \frac{e^{\ln{\left(2 \right)} {\color{red}{u}}}}{\ln{\left(2 \right)}} = - \frac{e^{\ln{\left(2 \right)} {\color{red}{\frac{1}{x}}}}}{\ln{\left(2 \right)}}$$
Dolayısıyla,
$$\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x} = - \frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{\ln{\left(2 \right)}}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x} = - \frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{\ln{\left(2 \right)}}+C$$
Cevap
$$$\int \frac{2^{\frac{1}{x}}}{x^{2}}\, dx = - \frac{e^{\frac{\ln\left(2\right)}{x}}}{\ln\left(2\right)} + C$$$A