Intégrale de $$$\frac{2^{\frac{1}{x}}}{x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{2^{\frac{1}{x}}}{x^{2}}\, dx$$$.
Solution
Changer de base:
$${\color{red}{\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{x^{2}} d x}}}$$
Soit $$$u=\frac{1}{x}$$$.
Alors $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dx}{x^{2}} = - du$$$.
Ainsi,
$${\color{red}{\int{\frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{x^{2}} d x}}} = {\color{red}{\int{\left(- e^{u \ln{\left(2 \right)}}\right)d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = e^{u \ln{\left(2 \right)}}$$$ :
$${\color{red}{\int{\left(- e^{u \ln{\left(2 \right)}}\right)d u}}} = {\color{red}{\left(- \int{e^{u \ln{\left(2 \right)}} d u}\right)}}$$
Soit $$$v=u \ln{\left(2 \right)}$$$.
Alors $$$dv=\left(u \ln{\left(2 \right)}\right)^{\prime }du = \ln{\left(2 \right)} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{\ln{\left(2 \right)}}$$$.
Donc,
$$- {\color{red}{\int{e^{u \ln{\left(2 \right)}} d u}}} = - {\color{red}{\int{\frac{e^{v}}{\ln{\left(2 \right)}} d v}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{\ln{\left(2 \right)}}$$$ et $$$f{\left(v \right)} = e^{v}$$$ :
$$- {\color{red}{\int{\frac{e^{v}}{\ln{\left(2 \right)}} d v}}} = - {\color{red}{\frac{\int{e^{v} d v}}{\ln{\left(2 \right)}}}}$$
L'intégrale de la fonction exponentielle vaut $$$\int{e^{v} d v} = e^{v}$$$ :
$$- \frac{{\color{red}{\int{e^{v} d v}}}}{\ln{\left(2 \right)}} = - \frac{{\color{red}{e^{v}}}}{\ln{\left(2 \right)}}$$
Rappelons que $$$v=u \ln{\left(2 \right)}$$$ :
$$- \frac{e^{{\color{red}{v}}}}{\ln{\left(2 \right)}} = - \frac{e^{{\color{red}{u \ln{\left(2 \right)}}}}}{\ln{\left(2 \right)}}$$
Rappelons que $$$u=\frac{1}{x}$$$ :
$$- \frac{e^{\ln{\left(2 \right)} {\color{red}{u}}}}{\ln{\left(2 \right)}} = - \frac{e^{\ln{\left(2 \right)} {\color{red}{\frac{1}{x}}}}}{\ln{\left(2 \right)}}$$
Par conséquent,
$$\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x} = - \frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{\ln{\left(2 \right)}}$$
Ajouter la constante d'intégration :
$$\int{\frac{2^{\frac{1}{x}}}{x^{2}} d x} = - \frac{e^{\frac{\ln{\left(2 \right)}}{x}}}{\ln{\left(2 \right)}}+C$$
Réponse
$$$\int \frac{2^{\frac{1}{x}}}{x^{2}}\, dx = - \frac{e^{\frac{\ln\left(2\right)}{x}}}{\ln\left(2\right)} + C$$$A