$$$\frac{\sqrt{- a^{2} + x^{2}}}{x}$$$$$$x$$$ 的積分

此計算器會求出 $$$\frac{\sqrt{- a^{2} + x^{2}}}{x}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sqrt{- a^{2} + x^{2}}}{x}\, dx$$$

解答

$$$x=\cosh{\left(u \right)} \left|{a}\right|$$$

$$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$

因此,

$$$\frac{\sqrt{- a^{2} + x^{2}}}{x} = \frac{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}{\cosh{\left( u \right)} \left|{a}\right|}$$$

使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$

$$$\frac{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}{\cosh{\left( u \right)} \left|{a}\right|}=\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$

假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$

積分可以改寫為

$${\color{red}{\int{\frac{\sqrt{- a^{2} + x^{2}}}{x} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \left|{a}\right|}{\cosh{\left(u \right)}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\left|{a}\right|$$$$$$f{\left(u \right)} = \frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}}$$$

$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \left|{a}\right|}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\left|{a}\right| \int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$

將分子與分母同乘一個雙曲餘弦,並使用公式 $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$(取 $$$\alpha= u $$$),把其餘部分都以雙曲正弦表示:

$$\left|{a}\right| {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = \left|{a}\right| {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$

$$$v=\sinh{\left(u \right)}$$$

$$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (步驟見»),並可得 $$$\cosh{\left(u \right)} du = dv$$$

該積分變為

$$\left|{a}\right| {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = \left|{a}\right| {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$

重寫並拆分分式:

$$\left|{a}\right| {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = \left|{a}\right| {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$

逐項積分:

$$\left|{a}\right| {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = \left|{a}\right| {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$

$$\left|{a}\right| \left(- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}}\right) = \left|{a}\right| \left(- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}\right)$$

$$$\frac{1}{v^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$

$$\left|{a}\right| \left(v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}\right) = \left|{a}\right| \left(v - {\color{red}{\operatorname{atan}{\left(v \right)}}}\right)$$

回顧一下 $$$v=\sinh{\left(u \right)}$$$

$$\left|{a}\right| \left(- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}}\right) = \left|{a}\right| \left(- \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + {\color{red}{\sinh{\left(u \right)}}}\right)$$

回顧一下 $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$

$$\left|{a}\right| \left(\sinh{\left({\color{red}{u}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)}\right) = \left|{a}\right| \left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)} \right)}\right)$$

因此,

$$\int{\frac{\sqrt{- a^{2} + x^{2}}}{x} d x} = \left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} - \operatorname{atan}{\left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} \right)}\right) \left|{a}\right|$$

加上積分常數:

$$\int{\frac{\sqrt{- a^{2} + x^{2}}}{x} d x} = \left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} - \operatorname{atan}{\left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} \right)}\right) \left|{a}\right|+C$$

答案

$$$\int \frac{\sqrt{- a^{2} + x^{2}}}{x}\, dx = \left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} - \operatorname{atan}{\left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} \right)}\right) \left|{a}\right| + C$$$A


Please try a new game Rotatly