$$$\frac{\sqrt{- a^{2} + x^{2}}}{x}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \frac{\sqrt{- a^{2} + x^{2}}}{x}\, dx$$$。
解答
设$$$x=\cosh{\left(u \right)} \left|{a}\right|$$$。
则$$$dx=\left(\cosh{\left(u \right)} \left|{a}\right|\right)^{\prime }du = \sinh{\left(u \right)} \left|{a}\right| du$$$(步骤见»)。
此外,可得$$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$。
因此,
$$$\frac{\sqrt{- a^{2} + x^{2}}}{x} = \frac{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}{\cosh{\left( u \right)} \left|{a}\right|}$$$
利用恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{a^{2} \cosh^{2}{\left( u \right)} - a^{2}}}{\cosh{\left( u \right)} \left|{a}\right|}=\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$
假设$$$\sinh{\left( u \right)} \ge 0$$$,我们得到如下结果:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$
因此,
$${\color{red}{\int{\frac{\sqrt{- a^{2} + x^{2}}}{x} d x}}} = {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \left|{a}\right|}{\cosh{\left(u \right)}} d u}}}$$
对 $$$c=\left|{a}\right|$$$ 和 $$$f{\left(u \right)} = \frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \left|{a}\right|}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\left|{a}\right| \int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$
将分子和分母同乘以一个双曲余弦,并使用公式 $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$(其中 $$$\alpha= u $$$),把其余全部用双曲正弦表示。:
$$\left|{a}\right| {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = \left|{a}\right| {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$
设$$$v=\sinh{\left(u \right)}$$$。
则$$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (步骤见»),并有$$$\cosh{\left(u \right)} du = dv$$$。
因此,
$$\left|{a}\right| {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = \left|{a}\right| {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
改写并拆分该分式:
$$\left|{a}\right| {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = \left|{a}\right| {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
逐项积分:
$$\left|{a}\right| {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = \left|{a}\right| {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
应用常数法则 $$$\int c\, dv = c v$$$,使用 $$$c=1$$$:
$$\left|{a}\right| \left(- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}}\right) = \left|{a}\right| \left(- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}\right)$$
$$$\frac{1}{v^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$\left|{a}\right| \left(v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}\right) = \left|{a}\right| \left(v - {\color{red}{\operatorname{atan}{\left(v \right)}}}\right)$$
回忆一下 $$$v=\sinh{\left(u \right)}$$$:
$$\left|{a}\right| \left(- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}}\right) = \left|{a}\right| \left(- \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + {\color{red}{\sinh{\left(u \right)}}}\right)$$
回忆一下 $$$u=\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}$$$:
$$\left|{a}\right| \left(\sinh{\left({\color{red}{u}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)}\right) = \left|{a}\right| \left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)} - \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{\left|{a}\right|} \right)}}} \right)} \right)}\right)$$
因此,
$$\int{\frac{\sqrt{- a^{2} + x^{2}}}{x} d x} = \left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} - \operatorname{atan}{\left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} \right)}\right) \left|{a}\right|$$
加上积分常数:
$$\int{\frac{\sqrt{- a^{2} + x^{2}}}{x} d x} = \left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} - \operatorname{atan}{\left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} \right)}\right) \left|{a}\right|+C$$
答案
$$$\int \frac{\sqrt{- a^{2} + x^{2}}}{x}\, dx = \left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} - \operatorname{atan}{\left(\sqrt{\frac{x}{\left|{a}\right|} - 1} \sqrt{\frac{x}{\left|{a}\right|} + 1} \right)}\right) \left|{a}\right| + C$$$A