$$$\frac{\ln\left(t\right)}{t^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{\ln\left(t\right)}{t^{2}}\, dt$$$。
解答
對於積分 $$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\ln{\left(t \right)}$$$ 與 $$$\operatorname{dv}=\frac{dt}{t^{2}}$$$。
則 $$$\operatorname{du}=\left(\ln{\left(t \right)}\right)^{\prime }dt=\frac{dt}{t}$$$(步驟見 »),且 $$$\operatorname{v}=\int{\frac{1}{t^{2}} d t}=- \frac{1}{t}$$$(步驟見 »)。
該積分變為
$${\color{red}{\int{\frac{\ln{\left(t \right)}}{t^{2}} d t}}}={\color{red}{\left(\ln{\left(t \right)} \cdot \left(- \frac{1}{t}\right)-\int{\left(- \frac{1}{t}\right) \cdot \frac{1}{t} d t}\right)}}={\color{red}{\left(- \int{\left(- \frac{1}{t^{2}}\right)d t} - \frac{\ln{\left(t \right)}}{t}\right)}}$$
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=-1$$$ 與 $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$:
$$- {\color{red}{\int{\left(- \frac{1}{t^{2}}\right)d t}}} - \frac{\ln{\left(t \right)}}{t} = - {\color{red}{\left(- \int{\frac{1}{t^{2}} d t}\right)}} - \frac{\ln{\left(t \right)}}{t}$$
套用冪次法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{t^{2}} d t}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\int{t^{-2} d t}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\left(- t^{-1}\right)}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\left(- \frac{1}{t}\right)}} - \frac{\ln{\left(t \right)}}{t}$$
因此,
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = - \frac{\ln{\left(t \right)}}{t} - \frac{1}{t}$$
化簡:
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = \frac{- \ln{\left(t \right)} - 1}{t}$$
加上積分常數:
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = \frac{- \ln{\left(t \right)} - 1}{t}+C$$
答案
$$$\int \frac{\ln\left(t\right)}{t^{2}}\, dt = \frac{- \ln\left(t\right) - 1}{t} + C$$$A