$$$\frac{\ln\left(t\right)}{t^{2}}$$$ 的积分
您的输入
求$$$\int \frac{\ln\left(t\right)}{t^{2}}\, dt$$$。
解答
对于积分$$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\ln{\left(t \right)}$$$ 和 $$$\operatorname{dv}=\frac{dt}{t^{2}}$$$。
则 $$$\operatorname{du}=\left(\ln{\left(t \right)}\right)^{\prime }dt=\frac{dt}{t}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\frac{1}{t^{2}} d t}=- \frac{1}{t}$$$ (步骤见 »)。
所以,
$${\color{red}{\int{\frac{\ln{\left(t \right)}}{t^{2}} d t}}}={\color{red}{\left(\ln{\left(t \right)} \cdot \left(- \frac{1}{t}\right)-\int{\left(- \frac{1}{t}\right) \cdot \frac{1}{t} d t}\right)}}={\color{red}{\left(- \int{\left(- \frac{1}{t^{2}}\right)d t} - \frac{\ln{\left(t \right)}}{t}\right)}}$$
对 $$$c=-1$$$ 和 $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$- {\color{red}{\int{\left(- \frac{1}{t^{2}}\right)d t}}} - \frac{\ln{\left(t \right)}}{t} = - {\color{red}{\left(- \int{\frac{1}{t^{2}} d t}\right)}} - \frac{\ln{\left(t \right)}}{t}$$
应用幂法则 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{t^{2}} d t}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\int{t^{-2} d t}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\left(- t^{-1}\right)}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\left(- \frac{1}{t}\right)}} - \frac{\ln{\left(t \right)}}{t}$$
因此,
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = - \frac{\ln{\left(t \right)}}{t} - \frac{1}{t}$$
化简:
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = \frac{- \ln{\left(t \right)} - 1}{t}$$
加上积分常数:
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = \frac{- \ln{\left(t \right)} - 1}{t}+C$$
答案
$$$\int \frac{\ln\left(t\right)}{t^{2}}\, dt = \frac{- \ln\left(t\right) - 1}{t} + C$$$A