$$$\frac{\ln\left(t\right)}{t^{2}}$$$の積分
入力内容
$$$\int \frac{\ln\left(t\right)}{t^{2}}\, dt$$$ を求めよ。
解答
積分 $$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。
$$$\operatorname{u}=\ln{\left(t \right)}$$$ と $$$\operatorname{dv}=\frac{dt}{t^{2}}$$$ とする。
したがって、$$$\operatorname{du}=\left(\ln{\left(t \right)}\right)^{\prime }dt=\frac{dt}{t}$$$(手順は»を参照)および$$$\operatorname{v}=\int{\frac{1}{t^{2}} d t}=- \frac{1}{t}$$$(手順は»を参照)。
この積分は次のように書き換えられる
$${\color{red}{\int{\frac{\ln{\left(t \right)}}{t^{2}} d t}}}={\color{red}{\left(\ln{\left(t \right)} \cdot \left(- \frac{1}{t}\right)-\int{\left(- \frac{1}{t}\right) \cdot \frac{1}{t} d t}\right)}}={\color{red}{\left(- \int{\left(- \frac{1}{t^{2}}\right)d t} - \frac{\ln{\left(t \right)}}{t}\right)}}$$
定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=-1$$$ と $$$f{\left(t \right)} = \frac{1}{t^{2}}$$$ に対して適用する:
$$- {\color{red}{\int{\left(- \frac{1}{t^{2}}\right)d t}}} - \frac{\ln{\left(t \right)}}{t} = - {\color{red}{\left(- \int{\frac{1}{t^{2}} d t}\right)}} - \frac{\ln{\left(t \right)}}{t}$$
$$$n=-2$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$${\color{red}{\int{\frac{1}{t^{2}} d t}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\int{t^{-2} d t}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\frac{t^{-2 + 1}}{-2 + 1}}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\left(- t^{-1}\right)}} - \frac{\ln{\left(t \right)}}{t}={\color{red}{\left(- \frac{1}{t}\right)}} - \frac{\ln{\left(t \right)}}{t}$$
したがって、
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = - \frac{\ln{\left(t \right)}}{t} - \frac{1}{t}$$
簡単化せよ:
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = \frac{- \ln{\left(t \right)} - 1}{t}$$
積分定数を加える:
$$\int{\frac{\ln{\left(t \right)}}{t^{2}} d t} = \frac{- \ln{\left(t \right)} - 1}{t}+C$$
解答
$$$\int \frac{\ln\left(t\right)}{t^{2}}\, dt = \frac{- \ln\left(t\right) - 1}{t} + C$$$A