$$$\frac{1}{\sin^{2}{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\sin^{2}{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx$$$

解答

將被積函數改寫為以餘割函數表示:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$

$$$\csc^{2}{\left(x \right)}$$$ 的積分是 $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$

$${\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$

因此,

$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)}$$

加上積分常數:

$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)}+C$$

答案

$$$\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx = - \cot{\left(x \right)} + C$$$A


Please try a new game Rotatly