Ολοκλήρωμα του $$$\frac{1}{\sin^{2}{\left(x \right)}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{\sin^{2}{\left(x \right)}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx$$$.

Λύση

Ξαναγράψτε την ολοκληρωτέα συνάρτηση σε όρους της συντέμνουσας:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$

Το ολοκλήρωμα του $$$\csc^{2}{\left(x \right)}$$$ είναι $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:

$${\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$

Επομένως,

$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)}+C$$

Απάντηση

$$$\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx = - \cot{\left(x \right)} + C$$$A


Please try a new game Rotatly