$$$- 6 \sin{\left(2 t \right)}$$$ 的積分
您的輸入
求$$$\int \left(- 6 \sin{\left(2 t \right)}\right)\, dt$$$。
解答
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=-6$$$ 與 $$$f{\left(t \right)} = \sin{\left(2 t \right)}$$$:
$${\color{red}{\int{\left(- 6 \sin{\left(2 t \right)}\right)d t}}} = {\color{red}{\left(- 6 \int{\sin{\left(2 t \right)} d t}\right)}}$$
令 $$$u=2 t$$$。
則 $$$du=\left(2 t\right)^{\prime }dt = 2 dt$$$ (步驟見»),並可得 $$$dt = \frac{du}{2}$$$。
因此,
$$- 6 {\color{red}{\int{\sin{\left(2 t \right)} d t}}} = - 6 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- 6 {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = - 6 {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- 3 {\color{red}{\int{\sin{\left(u \right)} d u}}} = - 3 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回顧一下 $$$u=2 t$$$:
$$3 \cos{\left({\color{red}{u}} \right)} = 3 \cos{\left({\color{red}{\left(2 t\right)}} \right)}$$
因此,
$$\int{\left(- 6 \sin{\left(2 t \right)}\right)d t} = 3 \cos{\left(2 t \right)}$$
加上積分常數:
$$\int{\left(- 6 \sin{\left(2 t \right)}\right)d t} = 3 \cos{\left(2 t \right)}+C$$
答案
$$$\int \left(- 6 \sin{\left(2 t \right)}\right)\, dt = 3 \cos{\left(2 t \right)} + C$$$A