$$$- 4 x^{3} - 8 x^{2} - 4$$$ 的積分
您的輸入
求$$$\int \left(- 4 x^{3} - 8 x^{2} - 4\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x}}} = {\color{red}{\left(- \int{4 d x} - \int{8 x^{2} d x} - \int{4 x^{3} d x}\right)}}$$
配合 $$$c=4$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{8 x^{2} d x} - \int{4 x^{3} d x} - {\color{red}{\int{4 d x}}} = - \int{8 x^{2} d x} - \int{4 x^{3} d x} - {\color{red}{\left(4 x\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=8$$$ 與 $$$f{\left(x \right)} = x^{2}$$$:
$$- 4 x - \int{4 x^{3} d x} - {\color{red}{\int{8 x^{2} d x}}} = - 4 x - \int{4 x^{3} d x} - {\color{red}{\left(8 \int{x^{2} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$- 4 x - \int{4 x^{3} d x} - 8 {\color{red}{\int{x^{2} d x}}}=- 4 x - \int{4 x^{3} d x} - 8 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 4 x - \int{4 x^{3} d x} - 8 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$ 與 $$$f{\left(x \right)} = x^{3}$$$:
$$- \frac{8 x^{3}}{3} - 4 x - {\color{red}{\int{4 x^{3} d x}}} = - \frac{8 x^{3}}{3} - 4 x - {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=3$$$:
$$- \frac{8 x^{3}}{3} - 4 x - 4 {\color{red}{\int{x^{3} d x}}}=- \frac{8 x^{3}}{3} - 4 x - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{8 x^{3}}{3} - 4 x - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
因此,
$$\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x} = - x^{4} - \frac{8 x^{3}}{3} - 4 x$$
化簡:
$$\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x} = - x \left(x^{3} + \frac{8 x^{2}}{3} + 4\right)$$
加上積分常數:
$$\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x} = - x \left(x^{3} + \frac{8 x^{2}}{3} + 4\right)+C$$
答案
$$$\int \left(- 4 x^{3} - 8 x^{2} - 4\right)\, dx = - x \left(x^{3} + \frac{8 x^{2}}{3} + 4\right) + C$$$A