Integral of $$$- 4 x^{3} - 8 x^{2} - 4$$$

The calculator will find the integral/antiderivative of $$$- 4 x^{3} - 8 x^{2} - 4$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- 4 x^{3} - 8 x^{2} - 4\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x}}} = {\color{red}{\left(- \int{4 d x} - \int{8 x^{2} d x} - \int{4 x^{3} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=4$$$:

$$- \int{8 x^{2} d x} - \int{4 x^{3} d x} - {\color{red}{\int{4 d x}}} = - \int{8 x^{2} d x} - \int{4 x^{3} d x} - {\color{red}{\left(4 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=8$$$ and $$$f{\left(x \right)} = x^{2}$$$:

$$- 4 x - \int{4 x^{3} d x} - {\color{red}{\int{8 x^{2} d x}}} = - 4 x - \int{4 x^{3} d x} - {\color{red}{\left(8 \int{x^{2} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$- 4 x - \int{4 x^{3} d x} - 8 {\color{red}{\int{x^{2} d x}}}=- 4 x - \int{4 x^{3} d x} - 8 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- 4 x - \int{4 x^{3} d x} - 8 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = x^{3}$$$:

$$- \frac{8 x^{3}}{3} - 4 x - {\color{red}{\int{4 x^{3} d x}}} = - \frac{8 x^{3}}{3} - 4 x - {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$- \frac{8 x^{3}}{3} - 4 x - 4 {\color{red}{\int{x^{3} d x}}}=- \frac{8 x^{3}}{3} - 4 x - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \frac{8 x^{3}}{3} - 4 x - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Therefore,

$$\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x} = - x^{4} - \frac{8 x^{3}}{3} - 4 x$$

Simplify:

$$\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x} = - x \left(x^{3} + \frac{8 x^{2}}{3} + 4\right)$$

Add the constant of integration:

$$\int{\left(- 4 x^{3} - 8 x^{2} - 4\right)d x} = - x \left(x^{3} + \frac{8 x^{2}}{3} + 4\right)+C$$

Answer

$$$\int \left(- 4 x^{3} - 8 x^{2} - 4\right)\, dx = - x \left(x^{3} + \frac{8 x^{2}}{3} + 4\right) + C$$$A


Please try a new game Rotatly