$$$- \tan^{2}{\left(x \right)}$$$ 的積分
您的輸入
求$$$\int \left(- \tan^{2}{\left(x \right)}\right)\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-1$$$ 與 $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \tan^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\tan^{2}{\left(x \right)} d x}\right)}}$$
令 $$$u=\tan{\left(x \right)}$$$。
則 $$$x=\operatorname{atan}{\left(u \right)}$$$ 與 $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(步驟見»)。
因此,
$$- {\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$
重寫並拆分分式:
$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
逐項積分:
$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
$$$\frac{1}{u^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
回顧一下 $$$u=\tan{\left(x \right)}$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}}$$
因此,
$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)} + \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$
化簡:
$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$
加上積分常數:
$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$
答案
$$$\int \left(- \tan^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A