Integral of $$$- \tan^{2}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \tan^{2}{\left(x \right)}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \tan^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\tan^{2}{\left(x \right)} d x}\right)}}$$
Let $$$u=\tan{\left(x \right)}$$$.
Then $$$x=\operatorname{atan}{\left(u \right)}$$$ and $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (steps can be seen »).
The integral can be rewritten as
$$- {\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$
Rewrite and split the fraction:
$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Integrate term by term:
$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
The integral of $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Recall that $$$u=\tan{\left(x \right)}$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}}$$
Therefore,
$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)} + \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$
Simplify:
$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$
Add the constant of integration:
$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$
Answer
$$$\int \left(- \tan^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A