Ολοκλήρωμα του $$$- \tan^{2}{\left(x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- \tan^{2}{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- \tan^{2}{\left(x \right)}\right)\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-1$$$ και $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\left(- \tan^{2}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\tan^{2}{\left(x \right)} d x}\right)}}$$

Έστω $$$u=\tan{\left(x \right)}$$$.

Τότε $$$x=\operatorname{atan}{\left(u \right)}$$$ και $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (τα βήματα μπορούν να φανούν »).

Επομένως,

$$- {\color{red}{\int{\tan^{2}{\left(x \right)} d x}}} = - {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}$$

Επαναγράψτε και διασπάστε το κλάσμα:

$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Ολοκληρώστε όρο προς όρο:

$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:

$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

Το ολοκλήρωμα του $$$\frac{1}{u^{2} + 1}$$$ είναι $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Θυμηθείτε ότι $$$u=\tan{\left(x \right)}$$$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}}$$

Επομένως,

$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = - \tan{\left(x \right)} + \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

Απλοποιήστε:

$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- \tan^{2}{\left(x \right)}\right)d x} = x - \tan{\left(x \right)}+C$$

Απάντηση

$$$\int \left(- \tan^{2}{\left(x \right)}\right)\, dx = \left(x - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly