$$$\frac{1}{x^{2} \sqrt{x^{2} - 25}}$$$ 的積分

此計算器將求出 $$$\frac{1}{x^{2} \sqrt{x^{2} - 25}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{x^{2} \sqrt{x^{2} - 25}}\, dx$$$

解答

$$$x=5 \cosh{\left(u \right)}$$$

$$$dx=\left(5 \cosh{\left(u \right)}\right)^{\prime }du = 5 \sinh{\left(u \right)} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$

所以,

$$$\frac{1}{x^{2} \sqrt{x^{2} - 25}} = \frac{1}{25 \sqrt{25 \cosh^{2}{\left( u \right)} - 25} \cosh^{2}{\left( u \right)}}$$$

使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$

$$$\frac{1}{25 \sqrt{25 \cosh^{2}{\left( u \right)} - 25} \cosh^{2}{\left( u \right)}}=\frac{1}{125 \sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}=\frac{1}{125 \sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}}$$$

假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{1}{125 \sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}} = \frac{1}{125 \sinh{\left( u \right)} \cosh^{2}{\left( u \right)}}$$$

積分可以改寫為

$${\color{red}{\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x}}} = {\color{red}{\int{\frac{1}{25 \cosh^{2}{\left(u \right)}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{25}$$$$$$f{\left(u \right)} = \frac{1}{\cosh^{2}{\left(u \right)}}$$$

$${\color{red}{\int{\frac{1}{25 \cosh^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}{25}\right)}}$$

用雙曲正割表示被積分函數:

$$\frac{{\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{25} = \frac{{\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{25}$$

$$$\operatorname{sech}^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$

$$\frac{{\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{25} = \frac{{\color{red}{\tanh{\left(u \right)}}}}{25}$$

回顧一下 $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$

$$\frac{\tanh{\left({\color{red}{u}} \right)}}{25} = \frac{\tanh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{5} \right)}}} \right)}}{25}$$

因此,

$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{\frac{x}{5} - 1} \sqrt{\frac{x}{5} + 1}}{5 x}$$

化簡:

$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x}$$

加上積分常數:

$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x}+C$$

答案

$$$\int \frac{1}{x^{2} \sqrt{x^{2} - 25}}\, dx = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x} + C$$$A


Please try a new game Rotatly