Integral de $$$\frac{1}{x^{2} \sqrt{x^{2} - 25}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{1}{x^{2} \sqrt{x^{2} - 25}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{1}{x^{2} \sqrt{x^{2} - 25}}\, dx$$$.

Solución

Sea $$$x=5 \cosh{\left(u \right)}$$$.

Entonces $$$dx=\left(5 \cosh{\left(u \right)}\right)^{\prime }du = 5 \sinh{\left(u \right)} du$$$ (los pasos pueden verse »).

Además, se sigue que $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$.

Entonces,

$$$\frac{1}{x^{2} \sqrt{x^{2} - 25}} = \frac{1}{25 \sqrt{25 \cosh^{2}{\left( u \right)} - 25} \cosh^{2}{\left( u \right)}}$$$

Utiliza la identidad $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:

$$$\frac{1}{25 \sqrt{25 \cosh^{2}{\left( u \right)} - 25} \cosh^{2}{\left( u \right)}}=\frac{1}{125 \sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}=\frac{1}{125 \sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}}$$$

Suponiendo que $$$\sinh{\left( u \right)} \ge 0$$$, obtenemos lo siguiente:

$$$\frac{1}{125 \sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}} = \frac{1}{125 \sinh{\left( u \right)} \cosh^{2}{\left( u \right)}}$$$

Por lo tanto,

$${\color{red}{\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x}}} = {\color{red}{\int{\frac{1}{25 \cosh^{2}{\left(u \right)}} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{25}$$$ y $$$f{\left(u \right)} = \frac{1}{\cosh^{2}{\left(u \right)}}$$$:

$${\color{red}{\int{\frac{1}{25 \cosh^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}{25}\right)}}$$

Reescribe el integrando en términos de la secante hiperbólica:

$$\frac{{\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{25} = \frac{{\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{25}$$

La integral de $$$\operatorname{sech}^{2}{\left(u \right)}$$$ es $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{25} = \frac{{\color{red}{\tanh{\left(u \right)}}}}{25}$$

Recordemos que $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$:

$$\frac{\tanh{\left({\color{red}{u}} \right)}}{25} = \frac{\tanh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{5} \right)}}} \right)}}{25}$$

Por lo tanto,

$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{\frac{x}{5} - 1} \sqrt{\frac{x}{5} + 1}}{5 x}$$

Simplificar:

$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x}$$

Añade la constante de integración:

$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x}+C$$

Respuesta

$$$\int \frac{1}{x^{2} \sqrt{x^{2} - 25}}\, dx = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x} + C$$$A


Please try a new game Rotatly