Integral of $$$\frac{1}{x^{2} \sqrt{x^{2} - 25}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{2} \sqrt{x^{2} - 25}}\, dx$$$.
Solution
Let $$$x=5 \cosh{\left(u \right)}$$$.
Then $$$dx=\left(5 \cosh{\left(u \right)}\right)^{\prime }du = 5 \sinh{\left(u \right)} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$.
Therefore,
$$$\frac{1}{x^{2} \sqrt{x^{2} - 25}} = \frac{1}{25 \sqrt{25 \cosh^{2}{\left( u \right)} - 25} \cosh^{2}{\left( u \right)}}$$$
Use the identity $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{25 \sqrt{25 \cosh^{2}{\left( u \right)} - 25} \cosh^{2}{\left( u \right)}}=\frac{1}{125 \sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}=\frac{1}{125 \sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}}$$$
Assuming that $$$\sinh{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{125 \sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}} = \frac{1}{125 \sinh{\left( u \right)} \cosh^{2}{\left( u \right)}}$$$
Therefore,
$${\color{red}{\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x}}} = {\color{red}{\int{\frac{1}{25 \cosh^{2}{\left(u \right)}} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{25}$$$ and $$$f{\left(u \right)} = \frac{1}{\cosh^{2}{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{1}{25 \cosh^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}{25}\right)}}$$
Rewrite the integrand in terms of the hyperbolic secant:
$$\frac{{\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{25} = \frac{{\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{25}$$
The integral of $$$\operatorname{sech}^{2}{\left(u \right)}$$$ is $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{25} = \frac{{\color{red}{\tanh{\left(u \right)}}}}{25}$$
Recall that $$$u=\operatorname{acosh}{\left(\frac{x}{5} \right)}$$$:
$$\frac{\tanh{\left({\color{red}{u}} \right)}}{25} = \frac{\tanh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{5} \right)}}} \right)}}{25}$$
Therefore,
$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{\frac{x}{5} - 1} \sqrt{\frac{x}{5} + 1}}{5 x}$$
Simplify:
$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x}$$
Add the constant of integration:
$$\int{\frac{1}{x^{2} \sqrt{x^{2} - 25}} d x} = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x}+C$$
Answer
$$$\int \frac{1}{x^{2} \sqrt{x^{2} - 25}}\, dx = \frac{\sqrt{x - 5} \sqrt{x + 5}}{25 x} + C$$$A