$$$\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx$$$

解答

$$$u=\sqrt{x}$$$

$$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{x}} = 2 du$$$

因此,

$${\color{red}{\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x}}} = {\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$$$$f{\left(u \right)} = \frac{1}{\csc{\left(u \right)}}$$$

$${\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{\csc{\left(u \right)}} d u}\right)}}$$

用正弦表示被積函數:

$$2 {\color{red}{\int{\frac{1}{\csc{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\sin{\left(u \right)} d u}}}$$

正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$

$$2 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

回顧一下 $$$u=\sqrt{x}$$$

$$- 2 \cos{\left({\color{red}{u}} \right)} = - 2 \cos{\left({\color{red}{\sqrt{x}}} \right)}$$

因此,

$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}$$

加上積分常數:

$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}+C$$

答案

$$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx = - 2 \cos{\left(\sqrt{x} \right)} + C$$$A


Please try a new game Rotatly