$$$\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx$$$。
解答
令 $$$u=\sqrt{x}$$$。
則 $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (步驟見»),並可得 $$$\frac{dx}{\sqrt{x}} = 2 du$$$。
因此,
$${\color{red}{\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x}}} = {\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=2$$$ 與 $$$f{\left(u \right)} = \frac{1}{\csc{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{\csc{\left(u \right)}} d u}\right)}}$$
用正弦表示被積函數:
$$2 {\color{red}{\int{\frac{1}{\csc{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$2 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
回顧一下 $$$u=\sqrt{x}$$$:
$$- 2 \cos{\left({\color{red}{u}} \right)} = - 2 \cos{\left({\color{red}{\sqrt{x}}} \right)}$$
因此,
$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}$$
加上積分常數:
$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx = - 2 \cos{\left(\sqrt{x} \right)} + C$$$A