Integralen av $$$\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx$$$.

Lösning

Låt $$$u=\sqrt{x}$$$ vara.

$$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (stegen kan ses »), och vi har att $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Alltså,

$${\color{red}{\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x}}} = {\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2$$$ och $$$f{\left(u \right)} = \frac{1}{\csc{\left(u \right)}}$$$:

$${\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{\csc{\left(u \right)}} d u}\right)}}$$

Skriv om integranden i termer av sinus:

$$2 {\color{red}{\int{\frac{1}{\csc{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\sin{\left(u \right)} d u}}}$$

Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$2 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$

Kom ihåg att $$$u=\sqrt{x}$$$:

$$- 2 \cos{\left({\color{red}{u}} \right)} = - 2 \cos{\left({\color{red}{\sqrt{x}}} \right)}$$

Alltså,

$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}$$

Lägg till integrationskonstanten:

$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}+C$$

Svar

$$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx = - 2 \cos{\left(\sqrt{x} \right)} + C$$$A


Please try a new game Rotatly