Integralen av $$$\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx$$$.
Lösning
Låt $$$u=\sqrt{x}$$$ vara.
Då $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (stegen kan ses »), och vi har att $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
Alltså,
$${\color{red}{\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x}}} = {\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=2$$$ och $$$f{\left(u \right)} = \frac{1}{\csc{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{2}{\csc{\left(u \right)}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{\csc{\left(u \right)}} d u}\right)}}$$
Skriv om integranden i termer av sinus:
$$2 {\color{red}{\int{\frac{1}{\csc{\left(u \right)}} d u}}} = 2 {\color{red}{\int{\sin{\left(u \right)} d u}}}$$
Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$2 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Kom ihåg att $$$u=\sqrt{x}$$$:
$$- 2 \cos{\left({\color{red}{u}} \right)} = - 2 \cos{\left({\color{red}{\sqrt{x}}} \right)}$$
Alltså,
$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}$$
Lägg till integrationskonstanten:
$$\int{\frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}} d x} = - 2 \cos{\left(\sqrt{x} \right)}+C$$
Svar
$$$\int \frac{1}{\sqrt{x} \csc{\left(\sqrt{x} \right)}}\, dx = - 2 \cos{\left(\sqrt{x} \right)} + C$$$A