$$$\frac{5}{1 - x^{2}}$$$ 的積分

此計算器將求出 $$$\frac{5}{1 - x^{2}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{5}{1 - x^{2}}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=5$$$$$$f{\left(x \right)} = \frac{1}{1 - x^{2}}$$$

$${\color{red}{\int{\frac{5}{1 - x^{2}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{1 - x^{2}} d x}\right)}}$$

進行部分分式分解(步驟可見 »):

$$5 {\color{red}{\int{\frac{1}{1 - x^{2}} d x}}} = 5 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$

逐項積分:

$$5 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}} = 5 {\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{x + 1}$$$

$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + 5 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + 5 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$

$$$u=x + 1$$$

$$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

所以,

$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

回顧一下 $$$u=x + 1$$$

$$\frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} = \frac{5 \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - 5 \int{\frac{1}{2 \left(x - 1\right)} d x}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \frac{1}{x - 1}$$$

$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - 5 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - 5 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$

$$$u=x - 1$$$

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

該積分變為

$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

回顧一下 $$$u=x - 1$$$

$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2}$$

因此,

$$\int{\frac{5}{1 - x^{2}} d x} = - \frac{5 \ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2}$$

化簡:

$$\int{\frac{5}{1 - x^{2}} d x} = \frac{5 \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}$$

加上積分常數:

$$\int{\frac{5}{1 - x^{2}} d x} = \frac{5 \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}+C$$

答案

$$$\int \frac{5}{1 - x^{2}}\, dx = \frac{5 \left(- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right)}{2} + C$$$A


Please try a new game Rotatly