Intégrale de $$$\frac{5}{1 - x^{2}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{5}{1 - x^{2}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=5$$$ et $$$f{\left(x \right)} = \frac{1}{1 - x^{2}}$$$ :
$${\color{red}{\int{\frac{5}{1 - x^{2}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{1 - x^{2}} d x}\right)}}$$
Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):
$$5 {\color{red}{\int{\frac{1}{1 - x^{2}} d x}}} = 5 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Intégrez terme à terme:
$$5 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}} = 5 {\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \frac{1}{x + 1}$$$ :
$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + 5 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + 5 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
Soit $$$u=x + 1$$$.
Alors $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
Donc,
$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Rappelons que $$$u=x + 1$$$ :
$$\frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} = \frac{5 \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - 5 \int{\frac{1}{2 \left(x - 1\right)} d x}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = \frac{1}{x - 1}$$$ :
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - 5 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - 5 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
Soit $$$u=x - 1$$$.
Alors $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = du$$$.
L’intégrale devient
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
L’intégrale de $$$\frac{1}{u}$$$ est $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ :
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Rappelons que $$$u=x - 1$$$ :
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2}$$
Par conséquent,
$$\int{\frac{5}{1 - x^{2}} d x} = - \frac{5 \ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2}$$
Simplifier:
$$\int{\frac{5}{1 - x^{2}} d x} = \frac{5 \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{5}{1 - x^{2}} d x} = \frac{5 \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}+C$$
Réponse
$$$\int \frac{5}{1 - x^{2}}\, dx = \frac{5 \left(- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right)}{2} + C$$$A