Integralen av $$$\frac{5}{1 - x^{2}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{5}{1 - x^{2}}\, dx$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=5$$$ och $$$f{\left(x \right)} = \frac{1}{1 - x^{2}}$$$:
$${\color{red}{\int{\frac{5}{1 - x^{2}} d x}}} = {\color{red}{\left(5 \int{\frac{1}{1 - x^{2}} d x}\right)}}$$
Utför partialbråksuppdelning (stegen kan ses »):
$$5 {\color{red}{\int{\frac{1}{1 - x^{2}} d x}}} = 5 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}}$$
Integrera termvis:
$$5 {\color{red}{\int{\left(\frac{1}{2 \left(x + 1\right)} - \frac{1}{2 \left(x - 1\right)}\right)d x}}} = 5 {\color{red}{\left(- \int{\frac{1}{2 \left(x - 1\right)} d x} + \int{\frac{1}{2 \left(x + 1\right)} d x}\right)}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \frac{1}{x + 1}$$$:
$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + 5 {\color{red}{\int{\frac{1}{2 \left(x + 1\right)} d x}}} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + 5 {\color{red}{\left(\frac{\int{\frac{1}{x + 1} d x}}{2}\right)}}$$
Låt $$$u=x + 1$$$ vara.
Då $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.
Alltså,
$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{x + 1} d x}}}}{2} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} + \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Kom ihåg att $$$u=x + 1$$$:
$$\frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - 5 \int{\frac{1}{2 \left(x - 1\right)} d x} = \frac{5 \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}}{2} - 5 \int{\frac{1}{2 \left(x - 1\right)} d x}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \frac{1}{x - 1}$$$:
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - 5 {\color{red}{\int{\frac{1}{2 \left(x - 1\right)} d x}}} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - 5 {\color{red}{\left(\frac{\int{\frac{1}{x - 1} d x}}{2}\right)}}$$
Låt $$$u=x - 1$$$ vara.
Då $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.
Alltså,
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{x - 1} d x}}}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Integralen av $$$\frac{1}{u}$$$ är $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Kom ihåg att $$$u=x - 1$$$:
$$\frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2} - \frac{5 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}}{2}$$
Alltså,
$$\int{\frac{5}{1 - x^{2}} d x} = - \frac{5 \ln{\left(\left|{x - 1}\right| \right)}}{2} + \frac{5 \ln{\left(\left|{x + 1}\right| \right)}}{2}$$
Förenkla:
$$\int{\frac{5}{1 - x^{2}} d x} = \frac{5 \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}$$
Lägg till integrationskonstanten:
$$\int{\frac{5}{1 - x^{2}} d x} = \frac{5 \left(- \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}\right)}{2}+C$$
Svar
$$$\int \frac{5}{1 - x^{2}}\, dx = \frac{5 \left(- \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right)}{2} + C$$$A