$$$- \frac{19}{x^{2}} - \frac{4}{x^{5}}$$$ 的積分

此計算器將求出 $$$- \frac{19}{x^{2}} - \frac{4}{x^{5}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x}}} = {\color{red}{\left(- \int{\frac{4}{x^{5}} d x} - \int{\frac{19}{x^{2}} d x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=19$$$$$$f{\left(x \right)} = \frac{1}{x^{2}}$$$

$$- \int{\frac{4}{x^{5}} d x} - {\color{red}{\int{\frac{19}{x^{2}} d x}}} = - \int{\frac{4}{x^{5}} d x} - {\color{red}{\left(19 \int{\frac{1}{x^{2}} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$

$$- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\int{x^{-2} d x}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\left(- x^{-1}\right)}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\left(- \frac{1}{x}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$$$$f{\left(x \right)} = \frac{1}{x^{5}}$$$

$$- {\color{red}{\int{\frac{4}{x^{5}} d x}}} + \frac{19}{x} = - {\color{red}{\left(4 \int{\frac{1}{x^{5}} d x}\right)}} + \frac{19}{x}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-5$$$

$$- 4 {\color{red}{\int{\frac{1}{x^{5}} d x}}} + \frac{19}{x}=- 4 {\color{red}{\int{x^{-5} d x}}} + \frac{19}{x}=- 4 {\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}} + \frac{19}{x}=- 4 {\color{red}{\left(- \frac{x^{-4}}{4}\right)}} + \frac{19}{x}=- 4 {\color{red}{\left(- \frac{1}{4 x^{4}}\right)}} + \frac{19}{x}$$

因此,

$$\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x} = \frac{19}{x} + \frac{1}{x^{4}}$$

加上積分常數:

$$\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x} = \frac{19}{x} + \frac{1}{x^{4}}+C$$

答案

$$$\int \left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)\, dx = \left(\frac{19}{x} + \frac{1}{x^{4}}\right) + C$$$A


Please try a new game Rotatly