Intégrale de $$$- \frac{19}{x^{2}} - \frac{4}{x^{5}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)\, dx$$$.
Solution
Intégrez terme à terme:
$${\color{red}{\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x}}} = {\color{red}{\left(- \int{\frac{4}{x^{5}} d x} - \int{\frac{19}{x^{2}} d x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=19$$$ et $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ :
$$- \int{\frac{4}{x^{5}} d x} - {\color{red}{\int{\frac{19}{x^{2}} d x}}} = - \int{\frac{4}{x^{5}} d x} - {\color{red}{\left(19 \int{\frac{1}{x^{2}} d x}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-2$$$ :
$$- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\int{x^{-2} d x}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\left(- x^{-1}\right)}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\left(- \frac{1}{x}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = \frac{1}{x^{5}}$$$ :
$$- {\color{red}{\int{\frac{4}{x^{5}} d x}}} + \frac{19}{x} = - {\color{red}{\left(4 \int{\frac{1}{x^{5}} d x}\right)}} + \frac{19}{x}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-5$$$ :
$$- 4 {\color{red}{\int{\frac{1}{x^{5}} d x}}} + \frac{19}{x}=- 4 {\color{red}{\int{x^{-5} d x}}} + \frac{19}{x}=- 4 {\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}} + \frac{19}{x}=- 4 {\color{red}{\left(- \frac{x^{-4}}{4}\right)}} + \frac{19}{x}=- 4 {\color{red}{\left(- \frac{1}{4 x^{4}}\right)}} + \frac{19}{x}$$
Par conséquent,
$$\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x} = \frac{19}{x} + \frac{1}{x^{4}}$$
Ajouter la constante d'intégration :
$$\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x} = \frac{19}{x} + \frac{1}{x^{4}}+C$$
Réponse
$$$\int \left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)\, dx = \left(\frac{19}{x} + \frac{1}{x^{4}}\right) + C$$$A