$$$- \frac{19}{x^{2}} - \frac{4}{x^{5}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$- \frac{19}{x^{2}} - \frac{4}{x^{5}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x}}} = {\color{red}{\left(- \int{\frac{4}{x^{5}} d x} - \int{\frac{19}{x^{2}} d x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=19$$$ ve $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$ ile uygula:

$$- \int{\frac{4}{x^{5}} d x} - {\color{red}{\int{\frac{19}{x^{2}} d x}}} = - \int{\frac{4}{x^{5}} d x} - {\color{red}{\left(19 \int{\frac{1}{x^{2}} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\int{\frac{1}{x^{2}} d x}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\int{x^{-2} d x}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\left(- x^{-1}\right)}}=- \int{\frac{4}{x^{5}} d x} - 19 {\color{red}{\left(- \frac{1}{x}\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=4$$$ ve $$$f{\left(x \right)} = \frac{1}{x^{5}}$$$ ile uygula:

$$- {\color{red}{\int{\frac{4}{x^{5}} d x}}} + \frac{19}{x} = - {\color{red}{\left(4 \int{\frac{1}{x^{5}} d x}\right)}} + \frac{19}{x}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-5$$$ ile uygulayın:

$$- 4 {\color{red}{\int{\frac{1}{x^{5}} d x}}} + \frac{19}{x}=- 4 {\color{red}{\int{x^{-5} d x}}} + \frac{19}{x}=- 4 {\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}} + \frac{19}{x}=- 4 {\color{red}{\left(- \frac{x^{-4}}{4}\right)}} + \frac{19}{x}=- 4 {\color{red}{\left(- \frac{1}{4 x^{4}}\right)}} + \frac{19}{x}$$

Dolayısıyla,

$$\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x} = \frac{19}{x} + \frac{1}{x^{4}}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)d x} = \frac{19}{x} + \frac{1}{x^{4}}+C$$

Cevap

$$$\int \left(- \frac{19}{x^{2}} - \frac{4}{x^{5}}\right)\, dx = \left(\frac{19}{x} + \frac{1}{x^{4}}\right) + C$$$A


Please try a new game Rotatly