$$$\coth{\left(x \right)}$$$ 的积分
您的输入
求$$$\int \coth{\left(x \right)}\, dx$$$。
解答
将双曲余切改写为 $$$\coth\left(x\right)=\frac{\cosh\left(x\right)}{\sinh\left(x\right)}$$$:
$${\color{red}{\int{\coth{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\cosh{\left(x \right)}}{\sinh{\left(x \right)}} d x}}}$$
设$$$u=\sinh{\left(x \right)}$$$。
则$$$du=\left(\sinh{\left(x \right)}\right)^{\prime }dx = \cosh{\left(x \right)} dx$$$ (步骤见»),并有$$$\cosh{\left(x \right)} dx = du$$$。
所以,
$${\color{red}{\int{\frac{\cosh{\left(x \right)}}{\sinh{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回忆一下 $$$u=\sinh{\left(x \right)}$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\sinh{\left(x \right)}}}}\right| \right)}$$
因此,
$$\int{\coth{\left(x \right)} d x} = \ln{\left(\left|{\sinh{\left(x \right)}}\right| \right)}$$
加上积分常数:
$$\int{\coth{\left(x \right)} d x} = \ln{\left(\left|{\sinh{\left(x \right)}}\right| \right)}+C$$
答案
$$$\int \coth{\left(x \right)}\, dx = \ln\left(\left|{\sinh{\left(x \right)}}\right|\right) + C$$$A