$$$\coth{\left(x \right)}$$$ 的积分

该计算器将求出$$$\coth{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \coth{\left(x \right)}\, dx$$$

解答

将双曲余切改写为 $$$\coth\left(x\right)=\frac{\cosh\left(x\right)}{\sinh\left(x\right)}$$$:

$${\color{red}{\int{\coth{\left(x \right)} d x}}} = {\color{red}{\int{\frac{\cosh{\left(x \right)}}{\sinh{\left(x \right)}} d x}}}$$

$$$u=\sinh{\left(x \right)}$$$

$$$du=\left(\sinh{\left(x \right)}\right)^{\prime }dx = \cosh{\left(x \right)} dx$$$ (步骤见»),并有$$$\cosh{\left(x \right)} dx = du$$$

所以,

$${\color{red}{\int{\frac{\cosh{\left(x \right)}}{\sinh{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=\sinh{\left(x \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\sinh{\left(x \right)}}}}\right| \right)}$$

因此,

$$\int{\coth{\left(x \right)} d x} = \ln{\left(\left|{\sinh{\left(x \right)}}\right| \right)}$$

加上积分常数:

$$\int{\coth{\left(x \right)} d x} = \ln{\left(\left|{\sinh{\left(x \right)}}\right| \right)}+C$$

答案

$$$\int \coth{\left(x \right)}\, dx = \ln\left(\left|{\sinh{\left(x \right)}}\right|\right) + C$$$A


Please try a new game Rotatly