$$$- x^{23} + x + 1$$$ 的积分
您的输入
求$$$\int \left(- x^{23} + x + 1\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- x^{23} + x + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{x d x} - \int{x^{23} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{x d x} - \int{x^{23} d x} + {\color{red}{\int{1 d x}}} = \int{x d x} - \int{x^{23} d x} + {\color{red}{x}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$x - \int{x^{23} d x} + {\color{red}{\int{x d x}}}=x - \int{x^{23} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=x - \int{x^{23} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=23$$$:
$$\frac{x^{2}}{2} + x - {\color{red}{\int{x^{23} d x}}}=\frac{x^{2}}{2} + x - {\color{red}{\frac{x^{1 + 23}}{1 + 23}}}=\frac{x^{2}}{2} + x - {\color{red}{\left(\frac{x^{24}}{24}\right)}}$$
因此,
$$\int{\left(- x^{23} + x + 1\right)d x} = - \frac{x^{24}}{24} + \frac{x^{2}}{2} + x$$
化简:
$$\int{\left(- x^{23} + x + 1\right)d x} = \frac{x \left(- x^{23} + 12 x + 24\right)}{24}$$
加上积分常数:
$$\int{\left(- x^{23} + x + 1\right)d x} = \frac{x \left(- x^{23} + 12 x + 24\right)}{24}+C$$
答案
$$$\int \left(- x^{23} + x + 1\right)\, dx = \frac{x \left(- x^{23} + 12 x + 24\right)}{24} + C$$$A