Integrale di $$$- x^{23} + x + 1$$$

La calcolatrice troverà l'integrale/primitiva di $$$- x^{23} + x + 1$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- x^{23} + x + 1\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(- x^{23} + x + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{x d x} - \int{x^{23} d x}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$\int{x d x} - \int{x^{23} d x} + {\color{red}{\int{1 d x}}} = \int{x d x} - \int{x^{23} d x} + {\color{red}{x}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$x - \int{x^{23} d x} + {\color{red}{\int{x d x}}}=x - \int{x^{23} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=x - \int{x^{23} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=23$$$:

$$\frac{x^{2}}{2} + x - {\color{red}{\int{x^{23} d x}}}=\frac{x^{2}}{2} + x - {\color{red}{\frac{x^{1 + 23}}{1 + 23}}}=\frac{x^{2}}{2} + x - {\color{red}{\left(\frac{x^{24}}{24}\right)}}$$

Pertanto,

$$\int{\left(- x^{23} + x + 1\right)d x} = - \frac{x^{24}}{24} + \frac{x^{2}}{2} + x$$

Semplifica:

$$\int{\left(- x^{23} + x + 1\right)d x} = \frac{x \left(- x^{23} + 12 x + 24\right)}{24}$$

Aggiungi la costante di integrazione:

$$\int{\left(- x^{23} + x + 1\right)d x} = \frac{x \left(- x^{23} + 12 x + 24\right)}{24}+C$$

Risposta

$$$\int \left(- x^{23} + x + 1\right)\, dx = \frac{x \left(- x^{23} + 12 x + 24\right)}{24} + C$$$A


Please try a new game Rotatly