$$$x^{2} \cos{\left(x \right)}$$$ 的积分

该计算器将求出$$$x^{2} \cos{\left(x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int x^{2} \cos{\left(x \right)}\, dx$$$

解答

对于积分$$$\int{x^{2} \cos{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=\cos{\left(x \right)} dx$$$

$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\cos{\left(x \right)} d x}=\sin{\left(x \right)}$$$ (步骤见 »)。

该积分可以改写为

$${\color{red}{\int{x^{2} \cos{\left(x \right)} d x}}}={\color{red}{\left(x^{2} \cdot \sin{\left(x \right)}-\int{\sin{\left(x \right)} \cdot 2 x d x}\right)}}={\color{red}{\left(x^{2} \sin{\left(x \right)} - \int{2 x \sin{\left(x \right)} d x}\right)}}$$

$$$c=2$$$$$$f{\left(x \right)} = x \sin{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$x^{2} \sin{\left(x \right)} - {\color{red}{\int{2 x \sin{\left(x \right)} d x}}} = x^{2} \sin{\left(x \right)} - {\color{red}{\left(2 \int{x \sin{\left(x \right)} d x}\right)}}$$

对于积分$$$\int{x \sin{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\sin{\left(x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\sin{\left(x \right)} d x}=- \cos{\left(x \right)}$$$ (步骤见 »)。

因此,

$$x^{2} \sin{\left(x \right)} - 2 {\color{red}{\int{x \sin{\left(x \right)} d x}}}=x^{2} \sin{\left(x \right)} - 2 {\color{red}{\left(x \cdot \left(- \cos{\left(x \right)}\right)-\int{\left(- \cos{\left(x \right)}\right) \cdot 1 d x}\right)}}=x^{2} \sin{\left(x \right)} - 2 {\color{red}{\left(- x \cos{\left(x \right)} - \int{\left(- \cos{\left(x \right)}\right)d x}\right)}}$$

$$$c=-1$$$$$$f{\left(x \right)} = \cos{\left(x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} + 2 {\color{red}{\int{\left(- \cos{\left(x \right)}\right)d x}}} = x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} + 2 {\color{red}{\left(- \int{\cos{\left(x \right)} d x}\right)}}$$

余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$

$$x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 {\color{red}{\int{\cos{\left(x \right)} d x}}} = x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 {\color{red}{\sin{\left(x \right)}}}$$

因此,

$$\int{x^{2} \cos{\left(x \right)} d x} = x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 \sin{\left(x \right)}$$

加上积分常数:

$$\int{x^{2} \cos{\left(x \right)} d x} = x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 \sin{\left(x \right)}+C$$

答案

$$$\int x^{2} \cos{\left(x \right)}\, dx = \left(x^{2} \sin{\left(x \right)} + 2 x \cos{\left(x \right)} - 2 \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly